Stone Arch Bridges of Washington County, MD

Presentation for the County Engineers Association of Maryland (CEAM)

2009 Spring Conference
May 14, 2009

SCOTT HOBBS, P.E.
CAPITAL PROJECTS ENGINEERING

JOHN LATIMER, IV
GRUBER-LATIMER RESTORATION, LLC

Washington County Division of Public Works
Overview

- Introduction
- Washington County Bridges
- Bridge Inspection Program
- Funding
- Decision Making
- Design
- Rehabilitation
- Costs
- Repairs
- Closing
- Questions
Introduction

- Washington County goes to great efforts to preserve and maintain its infrastructure, including our stone arch bridges.
 - To ensure the maximum useful life of our structures.
 - To provide acceptable service to the public.
Washington County Bridges

• Major Structures - Culverts or bridges with spans of 20’+
• Minor Structures - Culverts or bridges with spans 6’-20’

• 90 Major Structures owned and maintained by County
 – 14 Stone Arch Bridges
• 185 Minor Structures owned and maintained by County
 – 12 Stone Arch Bridges

• 179 Major Structures owned and maintained by SHA
 – 7 Stone Arch Bridges
• 215 Minor Structures owned and maintained by SHA
 – 7 Stone Arch Bridges

• Approx. 580,000 major bridges in U.S.
Bridge Inspection Program

 – National Bridge Inspection Standards (NBIS)

• Primary purpose is to locate and evaluate existing bridge deficiencies to ensure the safety of the traveling public.
 – Stone arch bridges were not built to carry the vehicles of today.
 – Provide a thorough bridge inspection. Document and monitor the deficiencies until appropriate repairs can be made.
 • In turn, we can adequately preserve and maintain our historic structures.
Bridge Inspection Program

- NBIS require major structures to be inspected at least every 2 years.
 - Set national standards for proper safety inspection and evaluation of bridges
 - Bridge inspection reports

- Local jurisdictions determine the inspection cycle for minor structures. Every 4 years in Washington County.
Bridge Inspection Program

- From the Inspection Reports, the County evaluates:

 > Structure Inventory & Appraisal (SI&A) Ratings,
 > Bridge Sufficiency Ratings (BSR),
 > and PONTIS Ratings

- Based on the numbers, our stone arch bridges are at the top of the priority list for repairs.

Washington County Division of Public Works
Bridge Inspection Program

- Structural Inventory and Appraisal (SI&A) Ratings
 - Each component of a bridge gets a rating value from 0 to 9.
Bridge Inspection Program

- A bridge is considered structurally deficient if:

- Deck, Superstructure, Substructure, or Culvert are rated a 4 or less (poor or worse condition).
 - Some of our stone arch bridges needing repairs are considered structurally deficient.
Bridge Inspection Program

- Each bridge has a bridge sufficiency rating (BSR).
 - 0-100 (100 is new bridge)

- FHWA tracks each major bridge in the U.S. by this number.
Bridge Inspection Program

- If a bridge has a BSR of less than 50 and has a bridge component rated 4 or less, the bridge qualifies for replacement funding.

- If the bridge has a BSR from 50 to 80 and has a bridge component rated 4 or less, the bridge qualifies for rehabilitation funding.
 - 9 stone arch bridges qualify for rehabilitation funding.
Bridge Inspection Program

- Washington County spends $300,000 on major bridge inspections and $90,000 on minor bridge inspections.
 - Visual (hands-on) inspection and underwater inspection.
 - Written inspection report with documented conditions and photographs.
 - Approx. $40,000 major arches
 - Approx. $5,000 minor arches
Funding

- Funding is limited.

- Washington County spends app. $2.5 million per year on maintaining, repairing, rehabilitating, replacing bridges.

- Average rehabilitation cost for a three span stone arch bridge is app. $1,000,000 dollars.
Funding

- Prioritize funding.
- Capital Improvement Plan (CIP).
 - 6 major stone arch bridges are scheduled for rehabilitation in the next 10 years.
 - 4 stone arch bridges were rehabilitated since 2000.
Decision Making

- Due to the aging infrastructure and the lack of funding available, Washington County typically follows a “Worst-First” evaluation.

- “Worst-First” - Structures with the lowest ratings are grouped together for review.
 - If a structure is eligible for federal aid funding, it goes to the top of the list for rehabilitation or replacement.
 - Most of our stone arches fall under worst-first criteria.

Washington County Division of Public Works
Decision Making

- **Capital Projects Engineering**
 - Maintains inventory, develops priority list and cost estimates for review

- **Director of Public Works and CIP Budget Committee Review**
 - Evaluates list and prioritizes against other project needs (Buildings, Roads, Parks, etc.)

- **Washington County Commissioners**
 - Continue to invest in repairing and rehabilitating our stone arch bridges.
Design

- Our stone arch bridges are identified as historic.
 - Eligible for listing in the National Register of Historic Places.

- Must comply with Section 106
 - Afforded a degree of protection under historic preservation laws.

- Must adhere to Secretary of the Interior’s Standards for the Treatment of Historic Properties
 - To provide an acceptable rehabilitation or repair.
Design
Design

• Major rehabilitation projects are designed by a consultant hired by the County through SHA’s open-ended consultant process.
 – $150,000 design cost per bridge
 • Using Federal Aid Funding and SHA Review Process
 – Design and load rating based on finite element analysis modeling of reinforced lightweight fill concrete and stresses on the stone masonry arch.

• Repair plans are prepared in-house.
• Repairs to the bridges in the late 1970’s and early 1980’s provided a concrete cap over the arches and drainage pipes within the existing soil-gravel fill.
 – Not replacing the soil-gravel infill with lightweight concrete has been proven to be an issue with the development of bulging spandrel walls and severe deterioration of mortar joints.
Design

- The concrete cap over the arch has proven to be effective in protecting the arch and has assisted in ensuring the arches remain in tact during construction.
Design

- We use an effective technique for rehabilitation that strengthens the bridge and does not alter its visual appearance.
 - Replacing the soil-gravel fill with reinforced lightweight concrete and reconstructing the stone masonry spandrel and parapet walls.
- The fill of the bridge is not considered a character defining element.
Design

- This type of design follows the Secretary of Interior Standards
 - Deteriorated historic features will be repaired rather than replaced.
 - Where the severity of deterioration requires replacement of a distinctive feature, the new feature will match the old in design, color, texture, and where possible materials.
 - Replacement of missing features will be substantiated by documentary and physical evidence.
Design

and

- is considered “no adverse effect” by the Maryland Historical Trust.
 - Reconstruction of stone spandrel and parapet walls utilize existing salvaged stone or new stone that matches the existing stone as closely as possible.
 - The mortar used for repointing and reconstruction matches MHT’s recommendations.
Rehabilitation

• Most major stone arches need to be fully rehabilitated by a Contractor with sufficient resources.
 – $300,000 - $1,500,000 per project
 • $300,000 - $700,000 for two span arch
 • $700,000 - $1,100,000 for three span arch
 • $1,100,000 - $1,500,000 for four span arch
 – 4 - 8 months per project
Rehabilitation

General Work Items associated with most bridge rehabilitation projects:

- Excavate soil-gravel fill and replace with lightweight concrete.
 - Temporary shoring
- Reconstruct and/or re-point stone spandrel walls and parapet walls.
 - Scaffolding and stream diversion.
- Construct concrete collars around the pier/abutment.
- Replace concrete parapet cap.
Rehabilitation

- Excavate soil and gravel fill

Washington County Division of Public Works
Rehabilitation

Washington County Division of Public Works
Rehabilitation

- Place epoxy-coated reinforcing
Rehabilitation

• Replace with lightweight fill
Rehabilitation

• Reconstruct and/or re-point spandrel walls
Rehabilitation

• Reconstruct and/or re-point parapet walls
Rehabilitation

- Reconstruct pier noses
Rehabilitation

- **Types of Mortar Used in Current Construction**
 - **Lime Mortar (Lime, sand, and water)**
 - Used on stone arches in the early 1800’s.
 - No longer used because of durability and strength issues.
 - **Mason’s Hydrated Lime (Cement mortar, lime, sand, and water)**
 - Used on stone arches today.
 - Better durability and strength.
 - **Masonry Cement Mortar (Portland cement, hydrated lime, plasticizers, air entraining agents, sand, water)**
 - Types: M, S, N, O, K
 - Durability, strength, and workability are much better.
 - Type S (1,800 psi).
Rehabilitation

• Mortars
 – White masonry cement
 – Flamingo brand of masonry cement using the color C224 (formerly C280).
 – Mason’s hydrated lime
 • 1 part white masonry mortar mix.
 • 3 to 3 ½ parts of washed, sharp bank sand.
 • ¼ part of mason’s hydrated lime.
 – Masonry cement mortar - Type S

• Joint Styles
 – Shallow inverted tooled smooth “V” joint or flat joint.
Rehabilitation

• Repointing stone masonry mortar joints
Rehabilitation

• Access and scaffolding
 – Different methods are used depending on size of bridge.
 – Stream bed make-up effects anchoring of scaffolding.
 – Forklifts with aluminum picks for one and two span arches.
 – Scaffolding for three and four span arches.
 - System (engineered)
 - Buck (traditional)
 - Swing-stage
Rehabilitation

• Stone reconstruction
 – Stones are removed in an orderly fashion and placed back in an area similar to their original position.
 – Weight considerations of staged material.
Rehabilitation

- Pier nose stones are numbered and photographed to ensure original placement.
Rehabilitation

- Install stream diversion around pier and abutments.
Rehabilitation

- Construct concrete collars around the piers and/or abutments.
Rehabilitation

- Concrete pier caps.

Washington County Division of Public Works
Rehabilitation

• Completed Bridge Rehabilitation Projects

• Roxbury Mills Bridge W-5371
 • Rehabilitated in 2002
Rehabilitation

• Prys Mill Bridge W-5652
 • Rehabilitated in 2003

Washington County Division of Public Works
Rehabilitation

• Completed Bridge Rehabilitation Projects

• Broadfording Road Bridge W-0821
 • Rehabilitated in 2005
Rehabilitation

- Funkstown Bridge (No. 2) W-4001
- Rehabilitated in 2008

Washington County Division of Public Works
Costs

- **Excavation**
 - $100 per CY
- **Lightweight Concrete**
 - $300 per CY
- **Stone Masonry Reconstruction**
 - $1,200 per CY
- **Repointing Masonry Joints**
 - $30 per SF
- **Replace Concrete Parapet Cap**
 - $2,500 per CY
- **Concrete Collar**
 - $1,000 per CY
Repairs

• Flooding damaged pier nose.
 – Stones recovered from the stream were taken to our Highway Department for storage until bridge can be rehabilitated. A temporary concrete pier nose was constructed in its place.
Repairs

• Underwater inspection discovered undermined pier.
 – New concrete collar was constructed to stabilize the foundation.
Repairs

• Vehicle Damage to parapet wall.
 – Stones from the damaged wall were taken to our Highway Department for storage until the bridge can be rehabilitated. A temporary concrete wall was constructed in its place.
Repairs

• Vehicle Damage to parapet and spandrel wall.
 – Stones were recovered from the stream bank by our Highway Department and reconstructed to closely match their original position.
Closing

- To effectively maintain and preserve our stone arch bridges, we need to continually:
 - Assess our inventory
 - Identify and address our needs
 - Invest in one of our county’s greatest treasures.

- An effective method of rehabilitation, continued federal funding availability, and strong commitment to preservation is key.
Questions

Contact Information:

Scott Hobbs, P.E.
80 West Baltimore Street
Hagerstown, MD 21740
(240) 313-2407
shobbs@washco-md.net

John A. Latimer, IV
P.O. Box 276
Williamsport, MD 21795
(301) 223-8848
john.latimer@gl-restore.com